USN										
-----	--	--	--	--	--	--	--	--	--	--

15CS73

Seventh Semester B.E. Degree Examination, Jan./Feb. 2021 **Machine Learning**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1	a.	Define machine learning. Explain with specific examples.	(06 Marks)
	b.	How you will design a learning system? Explain with examples.	(06 Marks)
	c.	List and explain perspectives and issues in Machine Learning.	(04 Marks)
		OR	
2	a.	Define concept learning. Explain the task of concept learning.	(06 Marks)
	b.	How the concept learning can be viewed as the task of searching? Explain.	(04 Marks)
	c.	Explain with examples:	
		i) Find-S algorithm	
		ii) Candidate Elimination algorithm	(06 Marks)

Module-2

3	a.	Define decision tree learning. List and explain appropriate problems for o	decision tree
		learning.	(06 Marks)
	b.	Explain the basic decision tree learning algorithm.	(05 Marks)
	C	Describe Hypothesis space search in decision tree learning	(05 Marks)

4	a.	Define induct	ive dias	. Explain	inau	ictive dias	in dec	ision tree	learnn	ng.		(UO IVIA	rks)
	b.	Give the diffe	rences	between	the h	nypothesis	space	search in	r ID3 a	and	candidate	eliminat	tion
		algorithm.					•	~ *				(04 Ma	rks)
												(0 (3 5	

List and explain issues in decision tree learning.

(06 Marks)

5	a.	Define Artificial neural networks. Explain biological learning systems.	(US Marks)
	b.	Explain representations of Neural network.	(05 Marks)
	c.	Describe the characteristics of Back propagation algorithm.	(06 Marks)

Describe the characteristics of Back propagation algorithm.

	Define Perceptron. Explain representational power of Perceptrons.	(05 Marks)
b.	Explain gradient descent algorithm.	(06 Marks)
c.	Describe derivation of the back propagation rule.	(05 Marks)

OR

Module-4

7	a.	List and explain features of Bayesian learning methods.	(06 Marks)
	b.	Describe Brute-Force map learning algorithm.	(05 Marks)
	c.	Explain maximum likelihood and least-squared error hypothesis.	(05 Marks)

-	T

0		Describe maximum likelihood hypotheses for predicting probabilities.	(05 Marks)
0	a.	Describe maximum likelihood hypotheses for predicting probabilities. Define Bayesian belief networks. Explain with an example.	(06 Marks)
	b.	Define Bayesian belief lictworks. Explain with an oxampto	(05 Marks)
	C	Explain EM algorithm.	(05 1/14/115)

Module-5

9	a.	Define the following with examples: i) Sample error ii) True error	iii) Mean	iv) Variance.	(08 Marks)
	b.	Explain central limit Theorem. Explain K-Nearest neighbor algorithm	Ox		(04 Marks) (04 Marks)

OR

(06 Marks)

Explain case-based reasoning. List and explain important differences of reinforcement algorithm with other function (04 Marks) approximation tasks.

Explain Q Learning Algorithm.

10

(06 Marks)